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Convective instability of equilibrium in a system of two horizontal layers of 
immiscible liquids, caused by the Rayleigh instability mechanism, has been 
studied within the framework of the linear theory in [1-5]. The present study 
will investigate the effect of a surface-active material (SAM), deposited on 
the boundary between the liquids, on the development of thermogravitation con- 
vection. Calculations were performed for two types of systems, which in the 
absence of a SAM show instability of a monotonic or an oscillatory character. 
A new type of oscillatory equilibrium instability was observed, produced by 
the effect of the SAM. In some region of parameter values the oscillatory in- 
stability may prove to be the more dangerous one. The action of the Marangoni 
effect on thermogravitation oscillations is considered. 

i. Let the space between two solid horizontal plates on which constant but different 
temperatures are maintained (temperature difference equal to 8) be filled by two layers 
of viscous immisible liquid. The origin of the coordinate system is located on the boundary 
between the layers; the x axis is directed horizontally, and the y axis vertically upward. 
The solid boundaries are described by the equations y = a and y = -a 2. The dynamic and 
kinematic viscosity, thermal conductivity, thermal diffusivity, and volume expansion coeffi- 
cients will be denoted by Nm, Vm, Km, Xm, ~m (m = 1 for the upper liquid, 2 for the lower). 
The effect of curvature of the separating boundary will not be considered since for thermo- 
gravitation convection it is insignificant [6]; the boundary is assumed planar and undeformed 
(y = 0). We assume that the SAM is concentrated on the boundary with a surface concentra- 
tion F(x). Reduction in the surface tension coefficient with increase in temperature and 
SAM concentration is described by the expression o = o 0 - sT - ~sF. 

We assume that the SAM concentration is low, so that its molecules form a "surface 
gas." SAM adsorption and desorption phenomena will not be considered. Transport of the 
SAM along the boundary is described by the equation [7] 

aF ~ " - ~2F 
0~ + ~ z  (vxF) Do Ox ~ .~ ( 1 . 1  ) 

where  Vx i s  t h e  l i q u i d  v e l o c i t y  on t h e  b o u n d a r y ,  Do i s  t h e  SAM s u r f a c e  d i f f u s i o n  c o e f f i c i e n t .  
I n  e q u i l i b r i u m  t h e  SAM c o n c e n t r a t i o n  on t h e  s u r f a c e  i s  c o n s t a n t :  r = F0. 

We i n t r o d u c e  t h e  n o t a t i o n :  D = Di /D2 ,  v = v i / v 2 ,  K = Ki /K2 ,  • = •  B = 8 i / B 2 ,  a = 
a 2 / a  i .  F o r  t h e  u n i t s  o f  l e n g t h ,  t i m e ,  v e l o c i t y ,  t e m p e r a t u r e ,  and  s u r f a c e  c o n c e n t r a t i o n  
we c h o o s e  t h e  v a l u e s  a i ,  a i 2 / ~ ) i ,  v z / a i ,  8 ,  and  r 0 .  The d i m e n s i o n l e s s  t e m p e r a t u r e  g r a d i e n t  
d T 0 / d y  i n  e q u i l i b r i u m  i s  e q u a l  t o  Ai  = - s / ( 1  + <a) i n  t h e  u p p e r  l i q u i d  and A 2 = - s < / ( 1  + 
Ka) i n  t h e  l o w e r ,  whe re  s = - 1  f o r  h e a t i n g  f rom a b o v e  and s = 1 f o r  h e a t i n g  f rom b e l o w .  

We w i l l  now c o n s i d e r  t h e  s t a b i l i t y  o f  e q u i l i b r i u m .  We impose  on t h e  e q u i l i b r i u m  s t a t e  
p e r t u r b a t i o n s  o f  t h e  f l o w  f u n c t i o n  ~ m ' ,  t h e  t e m p e r a t u r e  Tm' ,  and  t h e  SAM c o n c e n t r a t i o n  r ' :  

! ! v 

(~ ,  r~, ,~, r;,  r ' )  = (,~(y), r~(y), ~ (y) ,  r~(y), r l x  
X exp [ ikx  - -  (~ + ira) t]. 

(1.2) 

Here k is the wave number; ~ + i~ is the complex decrement. 

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 76-81, September-October, 1986. Original article submitted July 9, 1985. 
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The linearized convection equations have the form 

(~. + i(o)D%n --- --d,nD2%n + ik Or b,nT,n~ 
C m 

- -  (~, + co)) r m  - -  ~k%~lm = - v i -  D T . ,  
(1 .3)  

where D = d2/cly 2 - k 2, b i = d i = c I = i, b 2 = I/B, d 2 = i/v, c 2 = l/x, Pr = vi/Xi is the 
Prandtl number; Gr = g~l@als/vz 2 is the Grashof number. 

Denoting differentiation with respect to y by a prime, we write the conditions on the 

solid boundaries: 

y=t:  ~ = ~ = T ~ = O ,  y=--a: ~ = ~ = T ~ = O ;  

and the  boundary s e p a r a t i n g  the  l i q u i d s :  
I t p 

(1.4) 

( i .5)  

/ t  tt  ~l@i- - i k (MrTi+Br)=~2 ,  Mr= ~Oal B %rdat 
T]2%~ I ~ ?] 2%~i 

(i.6) 

After dedimensionalization and linearization we write Eq. (i.i) as 

(~ + Z~ -- O~ ~) r = ik~ (0) (D~ = D0/v~). 

Eliminating F from Eqs. (1.6) and (1.7), we obtain the boundary condition 

(1.7) 

y----0: rl~i--ik r r l +  ~__Dsk~+io)~ =~2., (1 .8)  

The equilibrium stability condition is defined by the condition ~ = 0. 

2. The boundary problem of Eqs. (1.3)-(1.5), (1.8) describes development of convection 
in a system with SAM on the boundary with simultaneous action of Rayleigh and thermocapil- 
lary instability mechanisms. Depending on the ratio of the parameters Mr and Gr, either 
instability mechanism may be dominant. The effect of a SAM on thermocapillary instability 
(Gr = 0) was studied in [8-11]. In the present study we will consider the situation in 
which the Rayleigh mechanism dominates. The boundary problem can be solved by the Eunge-Kutta 
method. 

It is known that, in the absence of SAM (B = 0) convective equilibrium instability 
can set in in both monotonic and oscillatory manners [4, 5]. The possibility of oscillatory 
instability follows from the fact that at K = SNX/v ~ 1 the boundary problem is non-self- 
conjugate [12]. Nevertheless, in the absence of SAM monotonic equilibrium is more typical; 
at present, oscillatory instability has been observed only in the system transformer oil- 
formic acid over a limited interval of layer thickness ratios a, while for this system, 
too, the minimum of the neutral curve is realized for monotonic perturbations. 

We will study the effect of a SAM on development of thermogravitation convection in 
the case where the instability is monotonic in the absence of SAM. As an example, we choose 
the system air-water with the following parameters: Pr = 0.758, N = 0.0182, v = 15.1, K = 
0.0396, X = 138, $ = 17.7, and a = i. Calculations in this section and Sec. 3 were performed 
for Ds = 10 -3 �9 

We will consider a situation in which thermocapillary effects are insignificant (Mr << 
Gr). Then in boundary condition (1.8) we may take Mr = 0. Calculations show that, for 
the given system, convective equilibrium instability in the presence of SAM may set in in 
either a monotonic or an oscillatory manner. We will consider the case of monotonic insta- 
bility (m = 0). Figure 1 shows monotonic neutral curves for B = 0.09, 0.05, 0.02, 0 (curves 
1-4). The dependence of critical Grashof number Gr,, normalized to wave number, on B is shown 
in Fig. 2 (curve i). Since, as is evident from boundary condition (1.8), the characteristic 
dimension of the problem is the ratio B/Ds, even at B - i0 -l the neutral curve approaches 
the limit (B § ~). This limit corresponds to replacement of boundary condition (1.8) by 
~i'(0) = 0, which physically corresponds to a solid surface dividing the liquids. 
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Inclusion of the SAM leads to the appearance of oscillatory instability. At low B, 
the oscillations appear in the longwave region 0 < k < k,(B). With increase in B, the 
termination point of the oscillatory neutral curve shifts in the shortwave direction, and 
when some value B l is exceeded, oscillatory perturbations become more dangerous. With fur- 
ther increase in B, k,(B) begins to decrease and, finally (at B > B2), monotonic perturba- 
tions again become the more dangerous ones. We note that at B = = (solid separation surface) 
the boundary problem is self-conjugate independent of the liquid parameters, so that oscilla- 
tory instability is impossible. In Fig. I the oscillatory neutral curves for B = 0.02, 
0.05, and 0.09 are shown by curves 5-7. The function Gr,(B) for oscillatory instability is 
shown by curve 3 of Fig. 2. Curves of frequency e as a function of wave number k for B = 
0.0005, 0.02, 0.05, 0.09 are shown in Fig. 3 (curves i-4). It can be shown analytically 
(by expansion in the parameter k), that the longwave asymptote of the oscillatory neutral 
curve at Gr0(k , B) at B ~ 0 is independent of B and coincides exactly with the asymptote 
of the monotonic neutral curve Grm(k, 0) at B = 0: 

l i ra  Gro (k,  B )  k 2 = l i m  Gr~  (k ,  O) k ~ = cons t .  
h~O h~O 

The longwave frequency asymptote as k * 0 has the form 

= k V - ~ c  + o~), 

where the quantity c is a function of the system parameters. It should be stressed that 
the section of the monotonic neutral curve in the region k < k,(B) located above the oscil- 
latory neutral curve (Fig. i) is not the limit of monotonic instability. Figure 4 shows 
the dependence of the decrement X on Gr in the region k < k, (B = 0.09, k = 1.5); the dashed 
curve corresponds to oscillatory perturbations; the solid, to monotonic. With increase 
in Gr, oscillatory instability develops at Gr = Gr 0 = 44.5; for Gr > Grd = 47.0 the oscilla- 
tion frequency vanishes and the system has two types of monotonically increasing perturba- 
tions, one of which becomes attenuating at Gr > Grm = 47.1. 
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We will consider the action of thermocapillary effects on the system air-water. In 
the absence of SAM, with increase in Mr, Gr, decreases, although instability remains mono- 
tonic. In the presence of SAM, as in the case of purely thermogravitation convection (Mr = 
0), two neutral curves exist - monotonic and oscillatory. Figure 2 shows curves of Gr,(B) 
for monotonic (curve 2) and oscillatory (curve 4) instability at Mr = i0. The interval 
of B values in which oscillatory perturbations are more dangerous increases with growth 
in Mr. Figure 5 shows Gr... as a function of Mr for fixed values of B for monotonic (solid 
curves) and oscillatory (dashed curves) neutral curves. Curve 1 corresponds to B = 0, 2, 
5, 0.02, 3, 6, 0.05, 4, 7, and 0.09. 

The effect of SAM on loss of equilibrium stability was also studied for the system 
water-silicone oil (Dow-Corning N 200). The change in the neutral curve pattern with in- 
crease in B is similar in character. 

3. We will describe the effect of SAM on development of convection in the system trans- 
former oil-formic acid with the following parameters: Pr = 306.32, q = 11.123, v = 15.408, 

= 0.41, X == 0.714, ~ = 0.672, a = 0.6667. 

Convective equilibrium stability has been studied for this system in the absence of 
SAM in [4, 511. Outside the wave number interval 2.3 < k < 3.6 the instability is monotonic 
in character, and we can distinguish stability limits at which conversion is excited predomi- 
nantly in the oil layer (Fig. 6, curves 1 and 4) and the acid layer (lines 2 and 3). At 
the limits of the indicated interval "closing" of the monotonic neutral curves occurs, which 
leads to the appearance of an oscillatory neutral curve (curve 5). For low B near both 
monotonic instability boundaries (curves 1 and 2), corresponding to excitation of convection 
in the oil layer and the acid layer, in the longwave region an oscillatory instability seg- 
ment develops, caused by the SAM; the mechanism by which it appears does not differ from 
that described in Sec. 2. With increase in B one of these segments unites with the oscil- 
latory neutral curve which existed in the absence of SAM, forming a single oscillatory neutral 
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curve which existed in the absence of SAM, forming a single oscillatory neutral curve which 
intersects the monotonic curve. The pattern of neutral curves takes on the form shown in 
Figs. 6 and 7 (lines 6-11, B = 0.05). With further increase in B, branching of the monotonic 
neutral curves takes place. We will describe the neutral curve pattern at B = 0.06. The 
lower branches of both monotonic neutral curves combine, forming a single monotonic neutral 
curve (curve 12). The same happens to the upper branches of the neutral curves (curve 13). 
The oscillatory neutral curve 14 intersects the boundary of monotonic instability 13 at 
the points A and B, and merges with it at point C, at which the oscillation frequency 
vanishes. The region limited above by curve 14 and below by curve 13 (between the points 
A and B) represents an equilibrium "stability island." With further increase in parameter 
B, the neutral curve pattern simplifies (lines 15-17, B = 0.i). 

Thus, the presence of surface-active material on the boundary between the media leads 
to the appearance of a specific type of oscillatory instability, which under certain condi- 
tions may prove to be the most dangerous instability. 

In conclusion, the authors express their gratitude to E. M. Zhukhovitskii for his help- 
ful evaluation. 
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